Stat 140: Inference for Simple Linear Regression Example - Wild Horses
 Evan Ray
 November 29, 2017

Wild Horses

What is the relationship between the size of a herd of horses and the number of foals (baby horses!!) that are born to that herd in a year?

```
horses <- read_csv("https://mhc-stat140-2017.github.io/data/sdm4/Wild_Horses.csv")
## Parsed with column specification:
## cols(
## Foals = col_integer(),
## Adults = col_integer()
## )
head(horses)
## # A tibble: 6 x 2
## Foals Adults
## <int> <int>
## 1 28 232
## 2 18 172
## 3 16 136
## 4 20 127
## 5 20 118
## 6 20 115
nrow(horses)
## [1] 38
```


Questions to Start With:

- What is the observational unit?
- What are the variable data types (categorical or quantitative)?
- Foals:
- Adults:
- Which of these variables is the explanatory variable and which is the response?
- Explanatory:
- Response:

Previously: Fit linear regression to describe the relationship between number of adults and number of foals in the sample.

Today: Use data from this sample to learn about the relationship between number of adults and number of foals in the population

(a) Are the assumptions for inference for the linear regression model met?

We'll add a new condition to our list for linear regression:

- Independence
- Randomization/no connection between different observational units

To remember this, think of a helpful leprechaun named Patrick O'LINE:

- (No) Outliers
- Linear Relationship
- Independent Observations
- Normal Distribution of Residuals
- Equal Variance of Residuals

- (No) Outliers
- Linear Relationahip (Straight Enough)
- Independent Observations (Randomization)
- Normal Distribution of Residuals (Can't check this yet - need to look at a histogram or density plot of the residuals after fitting the model)
- Equal Variance of Residuals (Does the Plot Thicken?)

(b) Fit the linear model

```
# format is: lm(response_variable ~ explanatory_variable, data = data_frame)
lm_fit <- lm(Foals ~ Adults, data = horses)
summary(lm_fit)
##
## Call:
## lm(formula = Foals ~ Adults, data = horses)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.374 -3.312 -0.965 3.686 11.172
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.5784 1.4916 -1.06 0.3
## Adults 0.1540 0.0114 13.49 1.2e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.94 on 36 degrees of freedom
## Multiple R-squared: 0.835, Adjusted R-squared: 0.83
## F-statistic: }182\mathrm{ on 1 and 36 DF, p-value: 1.19e-15
```


(c) Check that the residuals follow a nearly normal distribution

```
horses <- mutate(horses,
    residual = residuals(lm_fit),
    predicted = predict(lm_fit))
ggplot() +
    geom_density(mapping = aes(x = residual), data = horses)
```


(d) Explain in context what the regression says about the relationship between the number of adult horses in a herd and the number of foals born to that herd. Interpret both the intercept and the slope in context.
(e) Conduct a hypothesis test of the claim that when there are 0 adults in a herd, there will be 0 foals born to that herd.
(f) Draw a picture of a relevant t distribution for the hypothesis test in part (e) and shade in the region corresponding to the p-value. How would you calculate the p-value for part (e) using the pt function in R and the given estimate and standard error?
(g) Conduct a hypothesis test of the claim that there is no relationship between the number of adults in a herd and the number of foals who are born to that herd.
(h) Obtain a 99% confidence interval for the population intercept, β_{0}, and for the population slope, β_{1}. Interpret the confidence interval for β_{1} in context.

```
## Note that unlike every other confidence interval function we've looked at,
## we set the confidence level with an argument called level, not conf.level
confint(lm_fit, level = 0.99)
## 0.5 % 99.5 %
## (Intercept) -5.6347 2.478
## Adults 0.1229 0.185
```

(i) How would you calculate the confidence interval for part (f) using the qt function in R and the given estimate and standard error?
(j) Interpret the standard error for the slope using the " 95 " part of the 68-95-99.7 rule.

