Hypothesis Tests for Population Means

Evan L. Ray November 13, 2017

Outline of Hypothesis Tests (Again)

- 1. **Collect Data**: (For each of 8 attempts, was Paul's prediction right?)
- 2. Calculate a **test statistic**: x = 8 (observed number correct)
- 3. Write down **hypotheses**:
 - Null Hypothesis: Paul was just guessing: p = 0.5
 - Alternative Hypothesis: Paul is psychic: p > 0.5
- 4. **Sampling Distribution** of the test statistic, assuming null hypothesis is true.
- 5. **p-value**: probability of getting a test statistic at least as extreme as what we observed, assuming null hypothesis is true.
- 6. **Conclusion**: Compare the p-value to the significance level α . If the p-value is small, it's unlikely that Paul would get 8/8 right if he was just guessing, so we reject the null

Example: Body Temperatures

- It's generally believed that the average body temperature is 98.6 degrees Farenheit (37 degrees Celsius).
- Let's investigate with measurements of the temperatures of 130 adults.

- Hypotheses:
 - H_0 : $\mu = 98.6$
 - H_A : $\mu \neq 98.6$
- What should our test statistic be?

A Key Result from Last Class

- · $ar{X} \sim \mathrm{Normal}(\mu, \sigma/\sqrt{n})$
 - Across all samples, on average the sample mean is equal to the population mean μ .
 - The standard deviation of \bar{X} is $\frac{1}{\sqrt{n}}$ as much as the standard deviation σ of values in the population.

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}} \sim \mathrm{Normal}(0,1)$$

- $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ is the distance of \bar{X} from μ , in units of $SD(\bar{X})$.

$$rac{ar{X}-\mu}{s/\sqrt{n}}\sim t_{n-1} ext{ (replace } \sigma ext{ with its estimate, } s).$$

- $\frac{\bar{X}-\mu}{s/\sqrt{n}}$ is the distance of \bar{X} from μ , in units of $SE(\bar{X})$.

Test Statistic for a Mean

 $\cdot\;$ Let's define our test statistic to be

$$t=rac{ar{X}-\mu_0}{s/\sqrt{n}}, ext{ where }$$

 μ_0 is the value of μ specified in H_0 (98.6 in this case)

- How far was the sample mean from the hypothesized population mean, in units of our best guess at the standard deviation of \bar{X} ?
- If the null hypothesis is true, then

$$t=rac{ar{X}-\mu_0}{s/\sqrt{n}}\sim t_{n-1}$$

Conditions to Check

- Observations are **independent**
- Population is **nearly normal** (unimodal, approximately symmetric)...
- ...and **sample size** *n* is large enough (how big depends on how asymmetric distribution is)

Back to Body Temperatures

Assumptions for hypothesis tests about means:

- Independence
- Data distribution is nearly normal (unimodal and symmetric)
- Sufficient sample size

Hypotheses

- Null Hypothesis (H_0): $\mu = 98.6$ (where μ is the population mean temperature)
- Alternative Hypothesis (H_A): $\mu \neq 98.6$

Test Statistic

nrow(bodytemp)

[1] 130

mean(bodytemp\$temp)

[1] 98.24923

sd(bodytemp\$temp)

[1] 0.7331832

$$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} = \frac{98.249 - 98.6}{0.733/\sqrt{130}} = -5.460$$

9/15

Test Statistic in R

$$t=rac{ar{X}-\mu_0}{s/\sqrt{n}}$$

n <- nrow(bodytemp)
x_bar <- mean(bodytemp\$temp)
s <- sd(bodytemp\$temp)
mu_0 <- 98.6</pre>

t <- (x_bar - mu_0) / (s / sqrt(n)) t

[1] -5.454823

10/15

P-value

- Probability of getting a test statistic at least as extreme as what we observed, assuming the null hypothesis was true.
- "At least as extreme" in either direction, since $H_A: \mu \neq 98.6$
- $t \sim t_{129}$ (since n = 130 and the degrees of freedom is n-1)

Calculation of p-value

pt(-5.455, df = 129) # probability to the left of -5.455

[1] 1.204343e-07

1 - pt(5.455, df = 129) # probability to the right of 5.455

[1] 1.204343e-07

• Combined p-value is 0.00000241

Alternative Calculation in R

t.test(bodytemp\$temp, mu = 98.6, alternative = "two.sided")

```
##
## One Sample t-test
##
## data: bodytemp$temp
## t = -5.4548, df = 129, p-value = 2.411e-07
## alternative hypothesis: true mean is not equal to 98.6
## 95 percent confidence interval:
## 98.12200 98.37646
## sample estimates:
## mean of x
## 98.24923
```

Conclusion

• Compare the p-value to the significance level α . For example, if $\alpha = 0.001$ then

0.00000241 < 0.001, so

• The data provide enough evidence to conclude that the mean temperature is not 98.6 degrees F, at the $\alpha = 0.001$ significance level.

From Wikipedia

"The range for normal human body temperatures, taken orally, is 36.8 \pm 0.5 °C (98.2 \pm 0.9 °F). This means that any oral temperature between 36.3 and 37.3 °C (97.3 and 99.1 °F) is likely to be normal.

The normal human body temperature is often stated as 36.5-37.5 °C (97.7-99.5 °F). In adults a review of the literature has found a wider range of 33.2-38.2 °C (91.8-100.8 °F) for normal temperatures, depending on the gender and location measured."

- https://en.wikipedia.org/wiki/Human_body_temperature
- Never cite Wikipedia