Hypothesis Tests for Population Means

Evan L. Ray

November 13, 2017

Outline of Hypothesis Tests (Again)

1. Collect Data: (For each of 8 attempts, was Paul's prediction right?)
2. Calculate a test statistic: $x=8$ (observed number correct)
3. Write down hypotheses:

- Null Hypothesis: Paul was just guessing: $p=0.5$
- Alternative Hypothesis: Paul is psychic: $p>0.5$

4. Sampling Distribution of the test statistic, assuming null hypothesis is true.
5. p-value: probability of getting a test statistic at least as extreme as what we observed, assuming null hypothesis is true.
6. Conclusion: Compare the p -value to the significance level α. If the p-value is small, it's unlikely that Paul would get $8 / 8$ right if he was just guessing, so we reject the null

Example: Body Temperatures

- It's generally believed that the average body temperature is 98.6 degrees Farenheit (37 degrees Celsius).
- Let's investigate with measurements of the temperatures of 130 adults.

- Hypotheses:
- $H_{0}: \mu=98.6$
- $H_{A}: \mu \neq 98.6$
- What should our test statistic be?

A Key Result from Last Class

- $\bar{X} \sim \operatorname{Normal}(\mu, \sigma / \sqrt{n})$
- Across all samples, on average the sample mean is equal to the population mean μ.
- The standard deviation of \bar{X} is $\frac{1}{\sqrt{n}}$ as much as the standard deviation σ of values in the population.
- $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \operatorname{Normal}(0,1)$
- $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$ is the distance of \bar{X} from μ, in units of $S D(\bar{X})$.
- $\frac{\bar{X}-\mu}{s / \sqrt{n}} \sim t_{n-1}$ (replace σ with its estimate, s).
- $\frac{\bar{X}-\mu}{s / \sqrt{n}}$ is the distance of \bar{X} from μ, in units of $S E(\bar{X})$.

Test Statistic for a Mean

- Let's define our test statistic to be
$t=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}}$, where
μ_{0} is the value of μ specified in H_{0} (98.6 in this case)
- How far was the sample mean from the hypothesized population mean, in units of our best guess at the standard deviation of \bar{X} ?
- If the null hypothesis is true, then
$t=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}} \sim t_{n-1}$

Conditions to Check

- Observations are independent
- Population is nearly normal (unimodal, approximately symmetric)...
- ...and sample size n is large enough (how big depends on how asymmetric distribution is)

Back to Body Temperatures

Assumptions for hypothesis tests about means:

- Independence
- Data distribution is nearly normal (unimodal and symmetric)
- Sufficient sample size

Hypotheses

- Null Hypothesis $\left(H_{0}\right): \mu=98.6$ (where μ is the population mean temperature)
- Alternative Hypothesis (H_{A}): $\mu \neq 98.6$

Test Statistic

nrow(bodytemp)
\#\# [1] 130
mean(bodytemp\$temp)
\#\# [1] 98.24923
sd(bodytemp\$temp)
\#\# [1] 0.7331832
$t=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}}=\frac{98.249-98.6}{0.733 / \sqrt{130}}=-5.460$

Test Statistic in R

$$
t=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}}
$$

```
n <- nrow(bodytemp)
x_bar <- mean(bodytemp$temp)
s <- sd(bodytemp$temp)
mu_0 <- 98.6
t <- (x_bar - mu_0) / (s / sqrt(n))
t
```

\#\# [1] -5.454823

P-value

- Probability of getting a test statistic at least as extreme as what we observed, assuming the null hypothesis was true.
- "At least as extreme" in either direction, since $H_{A}: \mu \neq 98.6$
- $t \sim t_{129}$ (since $n=130$ and the degrees of freedom is $n-1$)

Calculation of p-value

```
pt(-5.455, df = 129) # probability to the left of -5.455
## [1] 1.204343e-07
1 - pt(5.455, df = 129) # probability to the right of 5.455
## [1] 1.204343e-07
- Combined p-value is 0.000000241
```


Alternative Calculation in R

```
t.test(bodytemp$temp, mu = 98.6, alternative = "two.sided")
```

```
##
## One Sample t-test
##
## data: bodytemp$temp
## t = -5.4548, df = 129, p-value = 2.411e-07
## alternative hypothesis: true mean is not equal to 98.6
## 95 percent confidence interval:
## 98.12200 98.37646
## sample estimates:
## mean of x
## 98.24923
```


Conclusion

- Compare the p-value to the significance level α. For example, if $\alpha=0.001$ then
$0.000000241<0.001$, so
- The data provide enough evidence to conclude that the mean temperature is not 98.6 degrees F , at the $\alpha=0.001$ significance level.

From Wikipedia

"The range for normal human body temperatures, taken orally, is 36.8 $\pm 0.5^{\circ} \mathrm{C}\left(98.2 \pm 0.9^{\circ} \mathrm{F}\right)$. This means that any oral temperature between 36.3 and $37.3^{\circ} \mathrm{C}$ (97.3° and $99.1^{\circ} \mathrm{F}$) is likely to be normal.

The normal human body temperature is often stated as $36.5-37.5^{\circ} \mathrm{C}$ (97.7-99.5 ${ }^{\circ} \mathrm{F}$). In adults a review of the literature has found a wider range of 33.2-38.2 ${ }^{\circ} \mathrm{C}\left(91.8-100.8^{\circ} \mathrm{F}\right)$ for normal temperatures, depending on the gender and location measured."

- https://en.wikipedia.org/wiki/Human_body_temperature
- Never cite Wikipedia

