Hypothesis Tests for Population Proportions

Evan L. Ray

November 6, 2017

Is Paul the Octopus Psychic?

Recall our procedure for hypothesis testing:

1. Collect data: for each of 8 trials, was the prediction correct?
2. Calculate a sample statistic (called the test statistic):

- $x=$ total number correct (8 in our case)

3. Obtain the sampling distribution of the test statistic, assuming a null hypothesis of no effect (in this case, assuming Paul is just guessing)
4. Calculate the p-value: probability of getting a test statistic "at least as extreme" as what we observed in step 2
5. If the p-value is low, reject the null hypothesis and conclude that Paul is psychic!

More Carefully...

- Test Statistic: $x=8$ (observed number correct)
- Null Hypothesis: Paul was just guessing: $p=0.5$
- Alternative Hypothesis: Paul is psychic: $p>0.5$
- Sampling Distribution, assuming null hypothesis is true:
$X \sim \operatorname{Binomial}(8,0.5)$
(check assumptions!)
- p-value:
$P(X \geq 8)=0.0039$

- Conclusion: It's unlikely that Paul would get $8 / 8$ right if he was just guessing, so we reject the null hypothesis and conclude that he is psychic!

IMPORTANT FACT!!!

- Hypothesis tests are guaranteed tell you the wrong thing sometimes!!!!!!!!!!!!!!!!!
- This is similar to the fact that confidence intervals are guaranteed to miss the population parameter sometimes.
- More on this in a few days.

More on Hypotheses

- Null Hypothesis: (Short Hand: H_{0})
- Nothing has changed since the past...
- People are just guessing...
- Nothing interesting is going on...
- $p=$ (proportion from the past)/(chance of being right if just guessing)/(etc...)
- Alternative Hypothesis: (Short Hand: H_{A})
- Times have changed!
- People know what they're doing!
- The world is fascinating!
- $p \neq$ (value from null hypothesis)
- $p>$ (value from null hypothesis)
- $p<$ (value from null hypothesis)

Examples of Hypotheses

- Paul the Octopus, 8 right out of 8
- Null Hypothesis (H_{0}): $p=0.5$
- Alternative Hypothesis $\left(H_{A}\right): p>0.5$
- Proportion of M and M's that are blue (concerned it's lower now!); 12 blue out of 100
- Null Hypothesis $\left(H_{0}\right): p=0.16$
- Alternative Hypothesis $\left(H_{A}\right): p<0.16$
- The National Center for Education Statistics released a report in 1996 saying that 66\% of students had missed at least one day of school in the past month. A more recent survey of 8302 students found that 5562 of them had missed at least one day of school. Has the rate of absenteeism changed?
- Null Hypothesis $\left(H_{0}\right): p=0.66$
- Alternative Hypothesis $\left(H_{A}\right): p \neq 0.66$

More on P-Values

- p-value: probability of getting a test statistic "at least as extreme" as what we observed, assuming H_{0} is true
- What counts as "at least as extreme" depends on the form of the alternative hypothesis

P-Values for One-Sided Tests

- Paul predicts 8 of 8 correctly
- $H_{0}: p=0.5$
- $H_{A}: p>0.5$
- p-value: $P(X \geq 8)=0.0039$ if $X \sim \operatorname{Binomial}(8,0.5)$

- 12 Blue M\&M's out of 100
- $H_{0}: p=0.16$
- $H_{A}: p<0.16$
- p-value: $P(X \leq 12)=0.1703$ if $X \sim \operatorname{Binomial}(100,0.16)$

P-Values for Two-Sided Tests

- 5562 out of 8302 students missed at least one day of school.
- $H_{0}: p=0.66, H_{A}: p \neq 0.66$
- If H_{0} is true, $X \sim \operatorname{Binomial}(8302,0.66)$
- "At least as extreme": at least as far from the expected value
- $E(X)=n p=8302 * 0.66=5479.32$

- R actually does something slightly different, but the results will usually be the same as what's described here.

Calculation of P-Values in R

- Suppose we have a data frame with a variable indicating success/failure:

```
paul_guesses
```

```
## result
## 1 correct
## 2 correct
## 3 correct
## 4 correct
## 5 correct
## 6 correct
## 7 correct
## 8 correct
```


Calculation of P-Values in R (Cont'd)

- One-sided: $H_{A}: p>0.5$

```
binom.test(paul_guesses$result,
success = "correct",
p = 0.5,
alternative = "greater")
```

```
##
##
##
## data: paul_guesses$result [with success = correct]
## number of successes = 8, number of trials = 8, p-value = 0.003906
## alternative hypothesis: true probability of success is greater than 0.5
## 95 percent confidence interval:
## 0.687656 1.000000
## sample estimates:
## probability of success
##
1
```


Calculation of P-Values in R (Cont'd)

- One-sided: H_{A} : $p<0.16$
- Suppose we know the number of trials ($n=100 \mathrm{M} \& M ' s$) and number of successes ($x=12$ blue)

```
binom.test(x = 12,
    n = 100,
    p = 0.16,
    alternative = "less")
```

\#\#
\#\#
\#\#
\#\# data: 12 out of 100
\#\# number of successes $=12$, number of trials $=100, p$-value $=0.1703$
\#\# alternative hypothesis: true probability of success is less than 0.16
\#\# 95 percent confidence interval:
\#\# 0.0000000 0.1871661
\#\# sample estimates:
\#\# probability of success
\#\# 0.12

Calculation of P-Values in R (Cont'd)

- Two-sided: $H_{A}: p \neq 0.66$
- Suppose we know the number of trials ($n=8302$ students) and number of successes ($x=5562$ missed school)

```
binom.test(x = 5562,
    n = 8302,
    p = 0.66,
    alternative = "two.sided")
```

\#\#
\#\#
\#\#
\#\# data: 5562 out of 8302
\#\# number of successes $=5562$, number of trials $=8302, \mathrm{p}$-value $=$
\#\# 0.05595
\#\# alternative hypothesis: true probability of success is not equal to 0.66
\#\# 95 percent confidence interval:
\#\# 0.6597255 0.6800731
\#\# sample estimates:

Drawing Conclusions

- p-value: probability of getting a test statistic at least as extreme as what we observed, assuming H_{0} is true
- e.g., probability of getting at least 8 predictions right if Paul is just guessing
- If the p-value is small, that is evidence that the null hypothesis may not be true

Drawing Conclusions

- p-value: probability of getting a test statistic at least as extreme as what we observed, assuming H_{0} is true
- e.g., probability of getting at least 8 predictions right if Paul is just guessing
- If the p-value is small, that is evidence that the null hypothesis may not be true
- If we need to make a decision about whether or not the null hypothesis is true, we can see whether the p-value is smaller than a cutoff of our choosing
- The cutoff is the significance level of the test
- Denote the significance level by α (alpha)
- A common significance level: $\alpha=0.05$
- But this choice is arbitrary

Drawing Conclusions

- If the p-value $<\alpha$, we "reject" H_{0} : the data offer enough evidence to conclude that H_{0} is not true at the significance level α.
- If the p -value $\geq \alpha$, we "fail to reject"" H_{0} : the data don't offer enough evidence to conclude that H_{0} is not true at the significance level α.

Note About the Book

- The procedure described in these slides is different from what's in the book.
- Our method uses
- sample statistic = number of successes in the sample
- sampling distribution = modeled with a Binomial
- The book's method uses
- sample statistic = proportion of successes in the sample
- sampling distribution = modeled with a Normal
- Everything else is the same (hypotheses, p-values, conclusions), and both methods are valid.
- Our procedure requires less work:
- fewer assumptions to check (more broadly applicable)
- fewer computations (e.g. no need to calculate $\sqrt{p(1-p) / n})$

