Confidence Intervals for Population Proportions

Evan L. Ray November 1, 2017

Warm Up

Suppose $X \sim \operatorname{Normal}(\mu, \sigma)$.

Define a new random variable Z by $Z = \frac{X-\mu}{\sigma}$.

Fact: Z also follows a Normal distribution. What are the mean (i.e., expected value) and variance of Z?

"Recall" that if X is a random variable and a is a number, then

E(aX) = aE(X)E(X+a) = E(X) + a $\mathrm{SD}(aX) = a^2\mathrm{SD}(X)$

More Babies

- The Apgar score gives a quick sense of a baby's physical health, and is used to determine whether a baby needs immediate medical care.
- It ranges from 0 (critical health problems) to 10 (no health problems).
- Let's try to estimate the proportion of babies in the population who have an Apgar score of 10 using a sample of n = 300 babies.

A New Variable...

babies <- mutate(babies, apgar_eq_10 = (apgar5 == 10))
head(babies[, c("gestation", "apgar5", "apgar_eq_10")])</pre>

##	#	А	tibble:	6	Х	3		
##		ge	estation	ap	ga	ar5	apgar_eq_10	
##			<int></int>	<	ir	nt>	<lgl></lgl>	
##	1		41			9	FALSE	
##	2		47			6	FALSE	
##	3		37			9	FALSE	
##	4		35			9	FALSE	
##	5		37			10	TRUE	
##	6		35			9	FALSE	

Population Proportion

table(babies\$apgar_eq_10)

FALSE TRUE ## 236381 21648

table(babies\$apgar_eq_10) / nrow(babies)

5/21

Sample Proportion

babies_sample <- sample_n(babies, size = 300)
table(babies_sample\$apgar_eq_10) / nrow(babies_sample)</pre>

- Our estimate of the population proportion based on this sample is WRONG!
- Can we get a sense of how wrong it might be, using only the data in our sample?

Sampling Distribution of \hat{p}

• On Monday we said that if n is big enough,

$$\hat{p} \sim \operatorname{Normal}\left(p, \sqrt{rac{p(1-p)}{n}}
ight)$$

• In this case, the population proportion is p = 0.084, and n = 300, so...

 $\hat{p} \sim \mathrm{Normal}\left(0.084, 0.016
ight)$

Interpretation with 68-95-99.7 Rule

 $\hat{p} \sim \mathrm{Normal}\left(0.084, 0.016
ight)$

- For about 68% of samples of size n we could take, the sample proportion \hat{p} will be within \pm 1 standard deviation (\pm 0.016) of the population proportion p = 0.084
- For about 95% of samples of size n we could take, the sample proportion \hat{p} will be within \pm 2 standard deviations (\pm 0.032) of the population proportion p = 0.084

A Confidence Interval

• If \hat{p} is within \pm 2 standard deviations of p, then p is contained in the interval

 $[\hat{p}-2\operatorname{SD}(\hat{p}),\hat{p}+2\operatorname{SD}(\hat{p})]$

- We are "95% Confident" that the population proportion *p* is in the interval [0.081, 0.145].
- For 95% of samples, an interval constructed this way contains *p*.

95% C.I.s from 100 Different Samples

10/21

A Minor Problem

• The 95% confidence interval from a couple of slides ago was

 $[\hat{p}-2\operatorname{SD}(\hat{p}),\hat{p}+2\operatorname{SD}(\hat{p})]$

• But $SD(\hat{p})$ depends on the (unknown) population parameter p:

$${
m SD}(\hat{p}\,)=\sqrt{rac{p(1-p)}{n}}$$

A Minor Problem

• The 95% confidence interval from a couple of slides ago was

$$[\hat{p}-2\operatorname{SD}(\hat{p}),\hat{p}+2\operatorname{SD}(\hat{p})]$$

• But $SD(\hat{p})$ depends on the (unknown) population parameter p:

$$\mathrm{SD}(\hat{p}) = \sqrt{rac{p(1-p)}{n}}$$

• We can **estimate** $SD(\hat{p})$ by plugging our **estimate** of p into this formula. An estimate of the standard deviation of a sampling distribution is called a **standard error**:

$$ext{SE}(\hat{p}) = \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

Critical Values

- What if we want a 90% CI instead of a 95% CI?
- We need to know: 90% of sample means will be within how many standard deviations of the population mean?
- This is called the **critical value**, and denoted by z^*

• Our new CI formula: $[\hat{p} - z^* \text{SE}(\hat{p}), \hat{p} + z^* \text{SE}(\hat{p})]$

Finding the Critical Value (Short Version)

For a 90% CI, the critical value is the 95th percentile of a Normal(0, 1) distribution:

qnorm(0.95, mean = 0, sd = 1)

[1] 1.644854

- More generally: for a $(1 \alpha) \times 100\%$ Cl, the critical value is the (1)th quantile of a Normal(0, 1) distribution:
 - $\alpha = 0.1 \rightarrow 90\%$ Cl. 1 0.05 = 0.95th quantile.
 - $\alpha = 0.05 \rightarrow 95\%$ Cl. 1 0.025 = 0.975th quantile.
 - $\alpha = 0.01 \rightarrow 99\%$ Cl. 1 0.005 = 0.995th quantile.

Finding the Critical Value

• For a 90% CI, we need the total area to the left of $p + z^* \text{SD}(\hat{p})$ to be 0.95, in a Normal(p, SD(\hat{p})) distribution.

Finding the Critical Value (continued)

• For a 90% CI, we need the total area to the left of $p + z^* \text{SD}(\hat{p})$ to be 0.95, in a Normal(p, SD(\hat{p})) distribution.

Let's define $Z=rac{\hat{p}-p}{\mathrm{SD}(\hat{p})}.$ Then $Z\sim\mathrm{Normal}(0,1)$ (see warmup)

Finding the Critical Value (continued)

• For a 90% CI, area to the left of $p + z^* \text{SD}(\hat{p})$ is 0.95.

• Define
$$Z = rac{\hat{p}-p}{\mathrm{SD}(\hat{p})}$$
. Then $Z \sim \mathrm{Normal}(0,1)$

Area to the left of
$$\frac{[p+z^*\mathrm{SD}(\hat{p})]-p}{\mathrm{SD}(\hat{p})} = z^*$$
 is 0.95.

17/21

Putting it All Together

· CI formula: $[\hat{p} - z^* \mathrm{SE}(\hat{p}), \hat{p} + z^* \mathrm{SE}(\hat{p})]$

Standard Error of \hat{p} : $ext{SE}(\hat{p}) = \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$

- Critical Value: z^* is the 97.5th percentile of a standard normal distribution if we want a 95% CI
 - Use qnorm function in R
- Margin of Error: $z^*\mathrm{SE}(\hat{p})$ (how much we add and subtract from the point estimate \hat{p})
- Interpretation: In repeated sampling, a confidence interval constructed using this procedure contains the population parameter for 95% of samples (or whatever your confidence level is).

Assumptions to Check

- Two outcomes (that are relevant to this analysis)
- Same probability of success
- People/items in our sample are **independent**
 - Think about how data were collected/if there is a connection between units
 - 10% Condition: Sample size less than 10% of population size?
- Sample size large enough to use normal approximation to the sampling distribution:
 - $np \geq 10$ and $n(1-p) \geq 10$
 - ... but we don't actually know p!
 - Check that there are at least 10 "successes" and 10 "failures" in the data set.

Manual Calculations in R

table(babies_sample\$apgar_eq_10) / nrow(babies_sample)

FALSE TRUE ## 0.8866667 0.1133333

p_hat <- 0.1133333
se_p_hat <- sqrt(p_hat * (1 - p_hat) / 300)
z_star <- qnorm(0.975, mean = 0, sd = 1)
p_hat - z_star * se_p_hat</pre>

[1] 0.07746206

p_hat + z_star * se_p_hat

[1] 0.1492045

Automagic Calculations in R

```
library(mosaic)
confint(binom.test(
    babies_sample$apgar_eq_10,
    conf.level = 0.95,
    ci.method = "wald",
    success = TRUE))
```

probability of success lower upper level
1 0.1133333 0.07746209 0.1492046 0.95